Refined Dual Stable Grothendieck Polynomials and Generalized Bender-Knuth Involutions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refined Dual Stable Grothendieck Polynomials and Generalized Bender-Knuth Involutions

The dual stable Grothendieck polynomials are a deformation of the Schur functions, originating in the study of the K-theory of the Grassmannian. We generalize these polynomials by introducing a countable family of additional parameters, and we prove that this generalization still defines symmetric functions. For this fact, we give two self-contained proofs, one of which constructs a family of i...

متن کامل

Stable Grothendieck Polynomials and K-theoretic Factor Sequences

We give a nonrecursive combinatorial formula for the expansion of a stable Grothendieck polynomial in the basis of stable Grothendieck polynomials for partitions. The proof is based on a generalization of the EdelmanGreene insertion algorithm. This result is applied to prove a number of formulas and properties for K-theoretic quiver polynomials and Grothendieck polynomials. In particular we for...

متن کامل

Refined restricted involutions

Define I n(α) to be the set of involutions of {1, 2, . . . , n} with exactly k fixed points which avoid the pattern α ∈ Si, for some i ≥ 2, and define I n(∅;α) to be the set of involutions of {1, 2, . . . , n} with exactly k fixed points which contain the pattern α ∈ Si, for some i ≥ 2, exactly once. Let in(α) be the number of elements in I k n(α) and let i k n(∅;α) be the number of elements in...

متن کامل

Another refinement of the Bender-Knuth (ex-)conjecture

We compute the generating function of column-strict plane partitions with parts in {1, 2, . . . , n}, at most c columns, p rows of odd length and k parts equal to n. This refines both, Krattenthaler’s [10] and the author’s [5] refinement of the Bender-Knuth (ex-)Conjecture. The result is proved by an extension of the method for proving polynomial enumeration formulas which was introduced by the...

متن کامل

Factorial Grothendieck Polynomials

In this paper, we study Grothendieck polynomials from a combinatorial viewpoint. We introduce the factorial Grothendieck polynomials, analogues of the factorial Schur functions and present some of their properties, and use them to produce a generalisation of a Littlewood-Richardson rule for Grothendieck polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2016

ISSN: 1077-8926

DOI: 10.37236/5737